

Reg. No.:						
-----------	--	--	--	--	--	--

Question Paper Code: 52764

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017

Fifth Semester Civil Engineering

MA 2211 – TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to all Branches) (Regulations 2008)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART – A

 $(10\times2=20 \text{ Marks})$

- 1. If f(x) is discontinuous at a point x = a, then what does its Fourier series represent at that point.
- 2. Write the complex form of Fourier series for a function f(x) defined in -l < x < l.
- 3. State the Fourier integral theorem.
- 4. If F[f(x)] = F(s), then find F[f(x-a)].
- 5. Find the partial differential equation by eliminating the arbitrary constants 'a' and 'b' from the relation z = a(x + y) + b.
- 6. Find the complete integral of $z = px + qy + \sqrt{pq}$.
- 7. If the ends of the string of length *l* are fixed and the midpoint of the string is displaced by a distance 'h' transversely and the string is released from rest, then write the initial conditions.
- 8. Write all possible solutions of two dimensional heat flow equation in steady state.
- 9. Find the Z-transform of the function f(n) = n.
- 10. Form the difference equation by eliminating arbitrary constant 'a' from $y_n = a.2^{n+1}$.

PART - B

 $(5\times16=80 \text{ Marks})$

11. a) i) Find the Fourier series for a function $f(x) = x + x^2$ in $(-\pi, \pi)$ and hence

1 1 1 = 1	
deduce the value of $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$	(8)

ii) Find the Fourier series of y = f(x) up to second harmonic which is defined (8) by the following data in $(0, 2\pi)$.

x	0	π/3	2π/3	π	$4\pi/3$	5π/3	2π
f(x)	1	1.4	1.9	1.7	1.5	1.2	1

(OR)

b) i) Find the half range cosine series for $f(x) = x(\pi - x)$ in $(0, \pi)$. Hence deduce the

value of
$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots$$
 124 when $\frac{1}{1^4} + \frac{1}{1^4} + \frac{1}{1^4} + \dots$ (8)

ii) Find the Fourier series for a function $f(x) = \begin{cases} l - x, & 0 < x \le l \\ 0, & l < x \le 2l \end{cases}$ in (0, 2l). (8)

12. a) i) If $F_S(s)$ and $F_C(s)$ denote Fourier sine and cosine transform of a function f(x) respectively, then show that $F_C \{f(x)\sin ax\} = \frac{1}{2} \{F_s(s+a) - F_s(s-a)\}$.

ii) Find the Fourier transform of a function $f(x) =\begin{cases} 1 - |x| & \text{for } |x| < 1 \\ 0 & \text{for } |x| > 1 \end{cases}$ and hence

find the value of
$$\int_{0}^{\infty} \frac{\sin^4 t}{t^4} dt$$
 by Parseval's identity. (12)

(OR) start where the application of the continuous start which is startly state. b) i) State the convolution theorem for Fourier transform.

ii) Find the Fourier sine and cosine transforms of a function $f(x) = e^{-x}$. Using Parseval's identity, evaluate:

1)
$$\int_{0}^{\infty} \frac{dx}{(x^{2}+1)^{2}}$$
 and 2) $\int_{0}^{\infty} \frac{x^{2}dx}{(x^{2}+1)^{2}}$ (14)

- 13. a) i) Find the singular integral of $z = px + qy + p^2 q^2$. (8)
 - ii) Find the general integral of $x(y^2 + z) p + y(x^2 + z) q = z (x^2 y^2)$. (8)
 - b) Solve the following equations:

i)
$$(D^2 - DD' - 20 D'^2) z = \sin (4x - y)$$
. (8)

- ii) $(D^2 D'^2 3D + 3D') z = xy$. (8)
- 14. a) A tightly stretched string of length l has its end fastened at x = 0, x = l. At t = 0, the string is in the form f(x) = kx(l-x) and then released. Find the displacement at any point of the string at a distance x from one end and at any time t > 0. (16)

 (OR)
 - b) A rod of length l cm has its ends A and B kept at 0° C and 100° C respectively, until steady state conditions prevail. If the temperature at B is suddenly reduced to 0° C and maintained at 0° C, find the temperature distribution u(x, t) at a distance x from A at any time t. (16)
- 15. a) i) If Z[f(n)] = F(z), then show that

1)
$$f(0) = \lim_{z \to \infty} F(z)$$
 and (8)

- 2) $\lim_{n\to\infty} f(n) = \lim_{z\to 1} [(z-1) F(z)]$
- ii) Find $Z^{-1} \left[\frac{8z^2}{(2z-1)(4z+1)} \right]$ by using convolution theorem. (8)
- b) i) Find the inverse Z-transform of $\frac{z}{(z-1)^2(z+1)}$ by method of partial fraction. (6)
 - ii) Solve the difference equation $y(n + 2) + 4y(n + 1) + 3y(n) = 3^n$, given that y(0) = 0 and y(1) = 1, by using Z-transform. (10)

('s - 's) = p to + 'specific - 'pelologicalli lenesa ani bell' Out the first of a graph and the surround from the second of the second the property of the second was a factor of the second seco . Bertalle in the free from the goal Hall A Annual Hall Color to be the first A REAL PHONE TO THE PROPERTY OF THE PARTY OF RET of the vig "E winty of (I must be to the Bound of the S" given to the